Artificial intelligence will transform many companies and create completely new types of businesses. The cofounder of Coursera, AI Fund, and Landing.AI shares how businesses can benefit.
Artificial intelligence (AI) is at the cutting edge of innovation. But how do companies find the expertise necessary to utilize it, and then take it to market? In this video, recorded at the Aspen Ideas Festival in June, Andrew Ng, cofounder of Coursera, AI Fund, and Landing.AI, discusses the difference between an AI-enabled business versus a true AI company, and how businesses can organize, hire, and make use of AI to add value.
How can AI create value for business right now?
Almost all the economic value created by AI is through one type of technology, which learns inputs, outputs, or maybe A-to-B mappings, such as you might input an email, telling you it’s spam or not. For speech recognition, you input an audio clip and output a text transcript. For machine translation, input an English sentence, output a Chinese sentence. For a self-driving car, input a picture of what’s in front of your car and your radar readings and output the position of the other cars.
What has changed about AI in recent years?
The technical ideas have, for the most part, been around for many decades, but we have only recently brought enough computation power and data to this form of AI to make it work really well. And this type of A-to-B mapping, the technical term is supervised learning. This one idea by itself is enough to transform multiple industries.
What is the impact of AI on automation?
Think automation on steroids. Until recently, there were some things that we could automate with computers. Thanks to the recent rise of AI, especially supervised learning, machine learning, the set of things we know how to automate is much bigger.
What is the next set of AI technologies that are around the corner?
In the AI research literature, we often talk about unsupervised learning, which roughly means letting the AI look around the world and figure things out by itself.
We sometimes talk about transfer learning, where you learn to do one thing and use that knowledge to do something else as well.
Sometimes, we talk about reinforcement learning, which is a little bit like how you might train a puppy. The dog does something good, and you go, “Good dog.” It does something bad, and you go, “Bad dog.” And over time, the dog figures out what it did well, what it did poorly, and hopefully does more of the good things.
I would say out of all of these categories, supervised learning is the one that’s creating clear value. Some of these other categories I feel like the algorithms and the thinking and how they take it to market are still in the early stage.